Формула нахождения значений скорости, времени и расстояния

Формула мгновенной скорости

Определение

Мгновенная скорость (обычно просто скорость) — это векторная величина, равная первой производной от радиус-вектора ($\overline{r}$), определяющего положение движущейся материальной точки, по времени ($t$):

\

Представим вектор $\overline{r}$ в декартовой системе координат в виде:

где $\overline{i}$; $\overline{j}$; $\overline{k}$ — единичные орты соответствующих осей координат, постоянные во времени, при этом формулой скорости можно считать выражение:

Проекциями вектора скорости на оси координат X, Y,Z являются:

Величину (модуль) скорости найдем в соответствии с формулой:

Если движение задается при помощи параметров траектории, что означает: известны траектория и функция пути от времени ($s(t)$); путь отсчитывают от точки траектории, которую считают начальной; каждая точка траектории характеризуется своей величиной $s$; радиус — вектор является функцией от $s,$ и траекторию можно задать при помощи уравнения:

в таком случае в формуле (1) $\overline{r}\left(t\right)$ будем рассматривать как сложную функцию: $\overline{r}\left$, формулой скорости станет:

Величина $\Delta s$ — это расстояние между двумя точками по траектории движения тела. Модуль $\left|\Delta \overline{r}\right|$ — расстояние между этими точками по кратчайшему направлению — прямой. При сближении рассматриваемых двух точек разница между $\Delta s$ и $\left|\Delta \overline{r}\right|$ уменьшается. Имеем:

где $\overline{\tau \ }$ — единичный вектор, касательный к траектории движения материальной точки. Кроме этого:

модуль скорости движения точки по траектории. Уравнение (6) представим как:

Формула (9) показывает, что мгновенная скорость направлена по касательной к траектории движения тела (материальной точки).

Скорость тела. Средняя скорость тела

      Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь   S ,   пройденный за время   t   телом, движущимся с постоянной скоростью   v .

      Сразу же сделаем важное

      Замечание 1. Единицы измерения величин   S ,   t   и   v   должны быть согласованными. Например, если путь измеряется в километрах, а время – в часах, то скорость должна измеряться в км/час.

      В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости, которая вычисляется по формуле

(1)

      Например, если тело в течение времени   t1   двигалось со скоростью   v1 ,  в течение времени   t2   двигалось со скоростью   v2 ,  в течение времени   t3   двигалось со скоростью   v3 ,  то средняя скорость

(2)

      Задача 1. По расписанию междугородный автобус должен проходить путь в   100   километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на   25   минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на   20   км/час. Какова скорость автобуса по расписанию?

      Решение. Обозначим буквой   v   скорость автобуса по расписанию и будем считать, что скорость   v   измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

Рис. 1

      Тогда

      – время движения автобуса по расписанию (в часах);

      – время, за которое автобус проехал первую половину пути (в часах);

      v + 20   – скорость автобуса во второй половине пути (в км/час);

      – время, за которое автобус проехал вторую половину пути (в часах).

      В условии задачи дано время остановки автобуса –   25   минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

      Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   40   км/час.

      Задача 2. (МИОО) Первый час автомобиль ехал со скоростью   120   км/час, следующие три часа – со скоростью   105   км/час, а затем три часа – со скоростью   65   км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

      Решение. Воспользовавшись , получаем

      Ответ.   90   км/час.

      Задача 3. Первую половину пути поезд шел со скоростью   40   км/час, а вторую половину пути – со скоростью   60   км/час. Найдите среднюю скорость поезда на протяжении всего пути.

      Решение. Обозначим буквой   S   длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

Рис. 2

      Тогда

      – время, за которое поезд прошел первую половину пути, выраженное в часах;

      – время, за которое поезд прошел вторую половину пути, выраженное в часах.

      Следовательно, время, за которое поезд прошел весь путь, равно

      В соответствии с средняя скорость поезда на протяжении всего пути

      Ответ.   48   км/час.

      Замечание 2. Средняя скорость поезда в задаче 3 равна   48   км/час, а не   50   км/час, как иногда ошибочно полагают, вычисляя чисел (скоростей)   40   км/час и   60   км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по .

Средняя скорость пешехода в зависимости от факторов

  • Если пешеход (например, турист) двигается по пересеченной местности, в лесу или в поле, то средняя скорость будет составлять 2,5-4 км/ч. Поэтому рекомендую при расчётах для туристических походов брать среднюю скорость 3-3,5 км/ч.
  • Если пешеход (например, турист) двигается в горах средняя скорость составляется 1,5-2 км/ч.
  • Если пешеход двигается по ровному безлюдному тротуару, то 5-6 км/ч.
  • Если пешеход передвигается очень медленным темпом (прогулочным шагом), то скорость составит не более 2,5-3 км/час, а то и меньше.
  • Если пешеход передвигается медленным темпом, то скорость составляет 3-4 км/час.
  • Если пешеход передвигается средним темпом, то скорость составляет 4-5,5 км/час.
  • Если пешеход передвигается быстрым темпом, то скорость составляет 5,5-6 км/час.
  • Если пешеход передвигается очень быстрым темпом, то скорость составляет свыше 6 км/час.
  • Скорость лёгкого бега 5–6 км/ч. Этот темп подходит для людей с нарушением опорно-двигательного аппарата, излишним весом и пожилых людей.
  • Скорость среднего темпа бега (который наиболее часто используется для утренней пробежки непрофессиональными спортсменами) составляет 7–8 км/ч.
  • Бег трусцой достигает скорости 12 км/ч. Этим темпом можно бегать на средние или длинные дистанции. Во время передвижения сердце перегоняет большой объем крови, что способствует укреплению сердечной мышцы и насыщению кровью всего организма. Бег трусцой благоприятно влияет на сердечно-сосудистую, эндокринную, нервную, а также иммунную систему. 

Какой должна быть средняя скорость машины в поездке?

Многие задаются вопросом, а какой же на самом деле должна быть средняя скорость автомобиля. Просчитав удивительный факт того, что средняя скорость авто в трассовом режиме составила всего 80 километров в час, водитель начинает сомневаться в том, что он эффективно использует ресурс транспортного средства. На самом деле, такая скорость вполне допустима.

Оптимальной скоростью при движении по трассе является 90 км/ч, но далеко не всегда получает держать крейсерскую скорость постоянно. Иногда происходят ситуации, которые заставляют в течение нескольких минут ехать медленно. К примеру, можно тянуться за фурой, ожидая возможности обгона. Оптимальная средняя скорость на трассе будет зависеть от таких факторов:

  • дорожные условия и состояние дороги, по которой выполняется поездка в нужное вам место;
  • количество транспорта, загруженность и сложность трассы для совершения обгонов медленных авто;
  • наличие дополнительных полос для совершения маневров без снижения скорости машины;
  • позволенная скорость и наличие средств автоматической фиксации нарушения ПДД или постов ГИБДД;
  • соображения личной безопасности, которые исходят из состояния собственного автомобиля;
  • тип транспорта, на котором вы преодолеваете дистанцию, его технические возможности и ограничения;
  • погодные условия, наличие корки льда на трассе или мокрая дорога, снижающая хорошее сцепление.

Это лишь базовые факторы, которые влияют на среднюю скорость машины при трассовой поездке. На практике при отсутствии нарушений ПДД средняя скорость автомобиля на трассе составляет 75-80 километров в час. Достичь средней скорости в 90 км/ч можно только на определенном отрезке трассы. Потому не огорчайтесь, увидев небольшие значения на экране бортового компьютера.

Первым фактором, который нужно оценивать при выборе скоростного режима на трассе, является безопасность. Именно этот важный критерий иногда становится жертвой нехватки времени или желания показать достойные цифры средней скорости. На деле такие цели никогда не приводят к хорошим последствиям, потому всегда выбирайте безопасные режимы поездки.

Примеры решения задач

Пример

Задание. Какова средняя скорость материальной точки за время ее движения, если точка прошла первую половину
пути имея скорость v1, остальную часть пути данная точка 1/2 времени двигалась со скоростью v2, последний
участок пути точка двигалась со скоростью v3.

Решение. В качестве основы для решения задачи формулу:

$$\langle v\rangle=\frac{s}{\Delta t}(1.1)$$

где время потраченное на путь ($\Delta t$) делится на три части:

$$\Delta t=t_{1}+t_{2}+t_{3}(1.2)$$

При этом имеют место следующие соотношения между отрезками пути, скоростью их преодоления и временем:

$$\left\{\begin{array}{c}\frac{1}{2} s=v_{1} t_{1} \rightarrow t_{1}=\frac{s}{2 v_{1}} \\ \frac{1}{2} s=v_{2} t_{2}+v_{3} t_{3} \rightarrow t_{3}=\frac{s}{2\left(v_{2}+v_{3}\right)}(1.3) \\ t_{2}=t_{3}=\frac{1}{2} t\end{array}\right.$$
$$\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$$

Ответ. $\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$

Слишком сложно?

Формула средней скорости не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какова средняя скорость частицы, движущейся по оси Xза время в течение которого, она пройдет первые
s метров пути, если функция скорости задана уравнением: $v=A \sqrt{x}$,
где A=const>0. Считать, что x=0 при t=0.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для средней путевой скорости, так как движение прямолинейное,
то средняя путевая скорость равна модулю вектора средней скорости. По условию задачи точка движется по оси X, тогда:

$$\langle v\rangle(t+\Delta t)=\frac{\Delta x}{\Delta t}(2.1)$$

По условиям x(t=0)=0, среднюю скорость ищем, когда тело находится в точкеx=sследовательно, выражение (2.1) преобразуем к виду:

$$\langle v\rangle=\frac{s}{t}(2.2)$$

Найдем зависимость скорости от времени, исходя из определения мгновенной скоростидля движения точки по оси X:

$$v=\frac{d x}{d t}=A \sqrt{x}(2.3)$$

Выразим из (2.2) x:

$$\frac{d x}{\sqrt{x}}=A d t \rightarrow x=\frac{A^{2} t^{2}}{4}(2.4)$$

Так как движение происходит по оси X, то $x=s=\frac{A^{2} t^{2}}{4}$ . Выразим время, которое точка затратила на путьs :

$$t=\frac{2 \sqrt{s}}{A}(2.5)$$

Подставим время из (2.4) в формулу (2.2):

$$\langle v\rangle=\frac{A}{2} \sqrt{s}$$

Ответ. $\langle v\rangle=\frac{A}{2} \sqrt{s}$

Читать дальше: Формула угловой скорости.

Сложение скоростей

Скорости движения тела в различных системах отсчёта связывает между собой классический
закон сложения скоростей.

Скорость тела относительно неподвижной системы отсчёта равна сумме
скоростей тела в подвижной системе отсчёта и самой подвижной системы
отсчёта относительно неподвижной.

Например, пассажирский поезд движется по железной дороге со скоростью 60 км/ч.
По вагону этого поезда идет человек со скоростью 5 км/ч. Если считать железную
дорогу неподвижной и принять её за систему отсчёта, то скорость человека относительно
системы отсчёта (то есть относительно железной дороги), будет равна сложению
скоростей поезда и человека, то есть

60 + 5 = 65, если человек идёт в том же направлении, что и поезд
60 – 5 = 55, если человек и поезд движутся в разных направлениях

Однако это справедливо только в том случае, если человек и поезд движутся по одной линии.
Если же человек будет двигаться под углом, то придётся учитывать этот угол, вспомнив о том,
что скорость – это векторная величина.

А теперь рассмотрим описанный выше пример более подробно – с деталями и картинками.

Итак, в нашем случае железная дорога – это неподвижная система отсчёта.
Поезд, который движется по этой дороге – это подвижная система отсчёта.
Вагон, по которому идёт человек, является частью поезда.

Скорость человека относительно вагона (относительно подвижной системы отсчёта) равна 5 км/ч.
Обозначим её буквой Ч.

Скорость поезда (а значит и вагона) относительно неподвижной системы отсчёта
(то есть относительно железной дороги) равна 60 км/ч. Обозначим её буквой
В. Иначе говоря, скорость
поезда – это скорость подвижной системы отсчёта относительно неподвижной системы отсчёта.

Скорость человека относительно железной дороги (относительно неподвижной системы отсчёта)
нам пока неизвестна. Обозначим её буквой .

Свяжем с неподвижной системой отсчёта (рис. 1.7) систему координат ХОY,
а с подвижной системой отсчёта – систему координат XПОПYП
(см. также раздел ).
А теперь попробуем найти скорость человека относительно неподвижной системы отсчёта,
то есть относительно железной дороги.

За малый промежуток времени Δt происходят следующие события:

  • Человек перемещается относительно вагона на расстояние Ч
  • Вагон перемещается относительно железной дороги на расстояние B

= Ч + B

Это закон сложения перемещений. В нашем примере перемещение человека
относительно железной дороги равно сумме перемещений человека относительно вагона и
вагона относительно железной дороги.


Рис. 1.7. Закон сложения перемещений.

Закон сложения перемещений можно записать так:

ЧB

Скорость человека относительно железной дороги равна:

 =  / Δt

= Ч + B

то

Скорость человека относительно вагона:

ΔЧ = Ч / Δt
ΔB = B / Δt
 = ΔЧ + ΔB

сложения скоростей
Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.

Виды ходьбы

Скандинавская

Другое название метода — финская ходьба ( Nordic Walking ), впервые описана финскими специалистами по тренировке лыжников в летний период. Этот метод требует особой экипировки — подходящей обуви и палок, наподобие лыжных, однако более коротких и тяжелых. Ходьба с палками подразумевает дополнительную нагрузку для мышц рук и верхней части туловища и более широкую амплитудность движений. Специальная конструкция креплений в виде перчаток с обрезанными пальцами позволяет не сжимать ручку палки, а как бы опираться на нее и помогает отталкиваться от земли. Палки подбираются индивидуально и составляют около 66-68 % от роста тренирующегося. Использование палок позволяет более функционально распределить нагрузку на позвоночник и суставы конечностей, риск травмы минимален. Скорость движения может быть разной — от легкого прогулочного шага до почти бега, в среднем — 6 км/ч.

Оздоровительная

Этот способ предполагает увеличение скорости до 6-8 км/ч, почти вдвое быстрее, чем при обычной ходьбе. В таком темпе необходимо идти от 30 до 60 минут, не сбавляя шага. В целом такая скорость позволяет разговаривать, не сбивая дыхание. Эта ходьба максимально приближена к пределу физиологических возможностей человека, у нее нет специальной техники выполнения. Для людей, имеющих лишний вес, перенесших травмы и операции, очень полезной будет и обычная скорость движения, главное — идти без остановок хотя бы полчаса.

Спортивная

Олимпийский вид спорта, скорость движения при ней от 7 до 15 (17) км/ч. Его отличие от других способов хождения в том, что контакт ног с землей должен быть видимым и постоянным, а нога, вынесенная вперед, не сгибается в колене. Вторая нога ставится на землю раньше, чем оторвется первая, каждый шаг является «двухопорным». Это формирует специфическую «походку», которая забавно выглядит со стороны, но она наименее травматична из-за мягкой постановки стопы. Руки согнуты в локтях и энергично работают на уровне грудной клетки, что позволяет включить в работу практически все мышцы тела. Необходима специальная обувь, которая будет анатомически поддерживать свод стопы, иначе возможно возникновение болей. Также требуется оборудованная ровная трасса без препятствий и дефектов.

Энергетическая

Некоторые источники описывают этот метод как «индейскую походку», он направлен не на уникальные физические достижения, а на целительный психологический эффект. Метод впервые описан в книгах Карлоса Кастанеды , который вел антропологические исследования индейских племен. Суть ее заключается в том, чтобы идти друг за другом, фокусируясь на ногах впереди идущего или на земле перед собой. Идти необходимо молча, сосредоточенно, достаточно долго и монотонно. Это помогает достичь трансового состояния и «остановки внутреннего диалога», то есть бесконечного потока мыслей. Руки должны быть абсолютно свободны, возможно дополнительное утяжеление в виде рюкзака. Энергетическая ходьба дает полноценный медитативный эффект и хорошо заряжает тренирующегося.

Примеры решения задач

Пример

Задание. Какова средняя скорость материальной точки за время ее движения, если точка прошла первую половину
пути имея скорость v1, остальную часть пути данная точка 1/2 времени двигалась со скоростью v2, последний
участок пути точка двигалась со скоростью v3.

Решение. В качестве основы для решения задачи формулу:

$$\langle v\rangle=\frac{s}{\Delta t}(1.1)$$

где время потраченное на путь ($\Delta t$) делится на три части:

$$\Delta t=t_{1}+t_{2}+t_{3}(1.2)$$

При этом имеют место следующие соотношения между отрезками пути, скоростью их преодоления и временем:

$$\left\{\begin{array}{c}\frac{1}{2} s=v_{1} t_{1} \rightarrow t_{1}=\frac{s}{2 v_{1}} \\ \frac{1}{2} s=v_{2} t_{2}+v_{3} t_{3} \rightarrow t_{3}=\frac{s}{2\left(v_{2}+v_{3}\right)}(1.3) \\ t_{2}=t_{3}=\frac{1}{2} t\end{array}\right.$$
$$\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$$

Ответ. $\langle v\rangle=\frac{2 v_{1}\left(v_{2}+v_{3}\right)}{v_{2}+v_{3}+2 v_{1}}$

Слишком сложно?

Формула средней скорости не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какова средняя скорость частицы, движущейся по оси Xза время в течение которого, она пройдет первые
s метров пути, если функция скорости задана уравнением: $v=A \sqrt{x}$,
где A=const>0. Считать, что x=0 при t=0.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для средней путевой скорости, так как движение прямолинейное,
то средняя путевая скорость равна модулю вектора средней скорости. По условию задачи точка движется по оси X, тогда:

$$\langle v\rangle(t+\Delta t)=\frac{\Delta x}{\Delta t}(2.1)$$

По условиям x(t=0)=0, среднюю скорость ищем, когда тело находится в точкеx=sследовательно, выражение (2.1) преобразуем к виду:

$$\langle v\rangle=\frac{s}{t}(2.2)$$

Найдем зависимость скорости от времени, исходя из определения мгновенной скоростидля движения точки по оси X:

$$v=\frac{d x}{d t}=A \sqrt{x}(2.3)$$

Выразим из (2.2) x:

$$\frac{d x}{\sqrt{x}}=A d t \rightarrow x=\frac{A^{2} t^{2}}{4}(2.4)$$

Так как движение происходит по оси X, то $x=s=\frac{A^{2} t^{2}}{4}$ . Выразим время, которое точка затратила на путьs :

$$t=\frac{2 \sqrt{s}}{A}(2.5)$$

Подставим время из (2.4) в формулу (2.2):

$$\langle v\rangle=\frac{A}{2} \sqrt{s}$$

Ответ. $\langle v\rangle=\frac{A}{2} \sqrt{s}$

Читать дальше: Формула угловой скорости.

Максимальная скорость бега человека

Следующий фактор, который влияет на скорость, – дистанция. Большинство тренированных людей могут бежать со скоростью 15-20 км/ч, но не более одного километра. Дальше их скорость начнёт падать до 12-15 км/ч. Если говорить об элитных спортсменах, то на марафонских дистанциях скорость мужчин составляет 19-21 км/ч. Женские показатели в беге на 12-15% ниже.

Учитывая дистанцию, бегуны делятся на спринтеров (100-400 м), средневиков (800-3000 м), стайеров (5000-10000 м) и марафонцев, и системы их тренировок кардинально отличаются.

Самые высокие показатели скорости характерны для спринтерских дистанций: лучшие спортсмены преодолевают 100-метровку за 10-11 секунд, а 200 м за 19-20 секунд. Такое время спортсмены показывают в основном на соревнованиях, потому что даже на тренировках их скорость на 10-20% ниже максимальной.

У стайеров и марафонцев на первом плане – выносливость, способность держать стабильную скорость на протяжении длительного времени и разогнаться к финишу. У новичков на длинных дистанциях скорость составляет 9-12 км/ч, у тренированных людей – 16-18 км/ч.

Читайте по теме: Как развить и увеличить выносливость в беге

Быстрее всех пробежал 42 км 195 м Элиуд Кипчоге в октябре 2019 года – за 1 час 59 минут и 40,2 секунды. Для этого ему пришлось бежать всю дистанцию, сохраняя скорость 21,1 км/ч. Но этот рекорд не был засчитан, поскольку условия забега были почти “лабораторными” и нарушали марафонские правила.

Действующий мировой рекорд установил он же в 2018 году на марафоне в Берлине, пробежав его за 2 часа 1 минуту и 39 секунд.

Неоднократно спринтеров и стайеров пытались сравнить, и для этого учёные вычислили дистанцию, на которой их физическая форма может быть сопоставима – это 492 метра.

Для интереса можно взглянуть, как марафонец-любитель Искандер Ядгаров и спринтер-профессионал Рушан Абдулкадеров в 2018 году выясняли, кто из них будет быстрее на дистанции 450 м.

Какой бывает скорость ходьбы

Определить, какая средняя скорость человека при ходьбе, не так просто, как кажется. На величину этого показателя влияет множество факторов. В зависимости от темпа ходьбы, выделяют четыре её разновидности:

1. Медленная ходьба – 2-2,5 км/ч. С этой скоростью рекомендовано передвигаться людям в преклонном возрасте, а также находящимся на реабилитации после травм и инсультов. С такой скоростью могут идти здоровые люди, просто прогуливаясь. Если рассматривать ходьбу как форму физической нагрузки, то на организм взрослого, здорового человека передвижение с такой скоростью не окажет никакого влияния.

2. Среднескоростная ходьба – 3-4 км/ч. На организм людей с пороками сердца и ослабленной сердечно-сосудистой системой такой темп ходьбы будет иметь благоприятное воздействие, а для здоровых – оказывать минимальный стимулирующий эффект.

3. Быстрый темп – 4-5 км/ч. Рекомендован всем здоровым людям в целях укрепления и тренировки организма.

4. Очень быстрая ходьба – 6-7 км/ч и более. Не принесёт пользы людям с ослабленным организмом. Без специальных тренировок поддерживать такой темп ходьбы длительное время – достаточно трудно. Что интересно, утомление при очень быстрой ходьбе наступает даже быстрее, чем при беге в таком же темпе.

Если встала задача – конкретизировать показатель, то можно сказать, что средняя скорость человека при ходьбе составляет 4,5 км/ч. Здесь подразумевается темп передвижения физически здорового взрослого. В шагах этот показатель нет смысла определять, потому что ширина шага у разных людей значительно отличается.

Средняя скорость при переменном движении

При неравномерном движении величина средней скорости сильно зависит от выбора промежутка времени движения тела.

Рассмотрим движение тела, которое свободно падает вниз. Закон движения при этом:

Для моментов времени $t_1=0,1\ $c координата тела (подставим время $t_1$ в формулу (4)) равна: $x_1=0,049\ $м; для $t_2=0,2\ $c$\ x_2=0,196$ м, тогда $\left\langle v\right\rangle $в промежутке времени от $t_1=0,1$ с до $t_2=0,2\ $c будет:

Если взять для того же свободно падающего тела промежуток времени от $t_1=0,7$ с до $t_2=0,8\ $c, то средняя скорость получится равной $\left\langle v\right\rangle =7,4\frac{м}{с}$.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад  в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют

Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется

Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна

А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат  (или радиус-вектора точки) от времени.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector