Двигатель внутреннего сгорания авто
Содержание:
- Виды электродвигателей: какой лучше
- Дизельный двигатель
- Вторичные двигатели
- Системы двигателя
- Дополнительные агрегаты, требующиеся для ДВС
- Внешняя скоростная характеристика двигателя
- Типы двигателей
- Характеристики двигателей
- Система зажигания
- Принцип работы и устройство двигателя
- Выбираем конфигурацию двигателя
- Авиационные двигатели
Виды электродвигателей: какой лучше
Описаны только основные виды электродвигателей и даны краткие характеристики, очень сжато описано устройство и принцип работы. Тем не менее, уже можно сделать выводы о том, что идеального решения, причём для всех случаев, просто нет. Есть наиболее подходящее для каждого конкретного случая.
- Асинхронный электродвигатель без частотного регулирования – лучший выбор для насосов.
- Коллекторный двигатель с его регулируемыми скоростями вне конкуренции для дрелей и пылесосов. И то, в последнее время стали делать с вентильными, они без щеток, что делает работу тише, срок службы дольше, хотя цену выше. Так что, тут, как посмотреть.
Выбирать вид электродвигателя надо под каждый конкретный случай
- Для вентиляторов с длительным режимом работы выбирать приходится между асинхронных и вентильных. Но только если они не слишком мощные. Для мощных важным является возможность разделения на секции, а это проще реализовать у вентильных. И даже на кулерах стали в последнее время использовать вентильные с магнитным ротором.
В общем, чтобы ответить какой лучше, надо рассматривать совокупность условий и характеристик работы
Принимать во внимание достоинства и недостатки, перебирать все виды электродвигателей и только так можно найти оптимальный
Дизельный двигатель
Как сделать простейший двигатель внутреннего сгорания своими руками
Дизельный двигатель широко применяется в автомобилях повышенной грузоподъемности и стационарных силовых установках, которые работают обычно на постоянной скорости. Дизельный двигатель обладает высоким термическим КПД, поэтому отличается высокой экономичностью. В выхлопных газах дизельного двигателя содержится низкий процент углеводородов и окислов углерода. Такие характеристики делают его хорошей альтернативой поршневому бензиновому двигателю в автомобилях. По конструкции оба двигателя очень похожи. Дизельный двигатель тяжелей и дороже бензинового. У этих двигателей принципиально разные топливные системы и системы зажигания. В дизельном двигателе в камеру сгорания всасывается только воздух. Он сжимается поршнем во время такта сжатия до такой степени, что нагревается при этом до температуры примерно 1000°Ф (540°С). Когда поршень доходит до верхней мертвой точки, в камеру сгорания через топливную форсунку впрыскивается под давлением топливо. Под действием высокотемпературного сжатого воздуха топливо воспламеняется. Давление рабочего газа, образующегося в результате сгорания топлива, толкает поршень вниз, и он совершает рабочий такт. Коленчатый вал продолжает вращаться и заставляет поршень снова двигаться вверх, вытесняя отработавшие газы из камеры сгорания через выпускной клапан. Использование дизельного двигателя в легковых автомобилях сдерживается двумя факторами: высокой стоимостью двигателя и сложностью достижения очень низкой нормы окислов азота в выхлопных газах, регламентированной стандартами.
Вторичные двигатели
Электродвигатели
В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.
В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.
Пневмодвигатели и гидромашины
Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.
Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Дополнительные агрегаты, требующиеся для ДВС
Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.
Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки (предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения (для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламенения топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).
Внешняя скоростная характеристика двигателя
Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего момента Ме от частоты вращения коленчатого вала при полной подаче топлива. Эффективной называется мощность, развиваемая на коленчатом валу двигателя. Внешняя скоростная характеристика определяет возможности двигателя и характеризует его работу. По внешней скоростной характеристике определяют техническое состояние двигателя. Она позволяет сравнивать различные типы двигателей и судить о совершенстве новых двигателей.
На внешней скоростной характеристике (рис.6) выделяют следующие точки, определяющие характерные режимы работы двигателя:
Nmax – максимальная (номинальная) мощность;
nN – частота вращения коленчатого вала при максимальной мощности;
Мmax – максимальный крутящий момент;
nM – частота вращения коленчатого вала при максимальном крутящем моменте;
nmin – минимальная частота вращения коленчатого вала, при которой двигатель работает устойчиво при полной подаче топлива;
nmax – максимальная частота вращения.
Из характеристики видно, что двигатель развивает максимальный момент при меньшей частоте вращения, чем максимальная мощность.
Это необходимо для автоматического приспосабливания двигателя к возрастающему сопротивлению движения. Например, автомобиль двигается по горизонтальной дороге при максимальной мощности двигателя и начинает преодолевать подъем. Сопротивление дороги возрастает, скорость автомобиля и частота вращения коленчатого вала уменьшаются, а крутящий момент увеличивается, обеспечивая возрастание тяговой силы на ведущих колесах автомобиля. Чем больше увеличение крутящего момента при уменьшении частоты вращения, тем выше приспосабливаемость двигателя и тем меньше вероятность его остановки. Для бензиновых двигателей увеличение (запас) крутящего момента достигает 30 %, а у дизелей — 15 %.
В эксплуатации большую часть времени двигатели работают в диапазоне частот вращения nM—nN, при которых развиваются соответственно максимальные крутящий момент и эффективная мощность. Внешнюю скоростную характеристику двигателя строят по данным результатов его испытаний на специальном стенде. При испытаниях с двигателя снимают часть элементов систем охлаждения, питания и др. (вентилятор, радиатор, глушитель и др.), без которых обеспечивается его работа на стенде. Полученные при испытаниях мощность и крутящий момент приводят к нормальным условиям, соответствующим давлению окружающего воздуха 1 атм и температуре 15 °С. Эти мощность и момент называются стендовыми, и они указываются в технических характеристиках, инструкциях, каталогах, проспектах и т.п. В действительности мощность и момент двигателя, установленного на автомобиле, на 5… 10 % меньше, чем стендовые. Это связано с установкой на двигатель элементов, которые были сняты при испытаниях (насос гидроусилителя, компрессор и др.). Кроме того, давление и температура при работе двигателя на автомобиле отличаются от нормальных.
При проектировании нового двигателя внешнюю скоростную характеристику получают расчетным способом, используя для этого специальные формулы. Однако действительную внешнюю скоростную характеристику получают только после изготовления и испытания двигателя.
Типы двигателей
Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:
- впуск воздуха или его смеси с топливом;
- сжатие рабочей смеси,
- рабочий ход при сгорании рабочей смеси;
- выпуск отработавших газов.
Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.
Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
- в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
- в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
- двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.
Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — “тяговиты на низах”).
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
- большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
- большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
- меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.
Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания
Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание
Гибридная силовая установка представляет собой комбинацию поршневого двигателя (как правило, дизеля), электродвигателя, генератора и тяговых (тяговая аккумуляторная батарея, в отличие от стартерной, рассчитана на разряд большими токами (50-100 А) в течение 30-60 минут) аккумуляторных батарей. Работа этой установки происходит в различных режимах в зависимости от характера движения автомобиля. При интенсивном разгоне вместе работают поршневой и электрический двигатели. Во время торможения двигателем за счет энергии замедления генератор заряжает аккумуляторные батареи. При движении в городском цикле может работать только электродвигатель. Все это позволяет, сохраняя (или даже улучшая) динамику разгона, значительно повысить экономичность и снизить выброс вредных веществ.
Характеристики двигателей
При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.
Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.
Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.
Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.
Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.
Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.
Система зажигания
Двигатели внутреннего сгорания можно классифицировать по их системе зажигания. Точка в цикле, в которой воспламеняется смесь топлива и окислителя, оказывает непосредственное влияние на эффективность и производительность ДВС. Для типичного 4-х тактного автомобильного двигателя горючая смесь должна достигать максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы гарантировать, что фронт пламени не соприкасается с нисходящей головкой поршня. Если передняя часть пламени соприкасается с поршнем, это приводит к розовому воздействию или ударам. Смеси Leaner и более низкие давления смеси сгорают медленнее, что требует более точного выбора времени зажигания. Сегодня большинство двигателей используют электрическую или компрессионную систему отопления для зажигания. Однако системы с открытым пламенем и горячими трубами использовались исторически.Никола Тесла получил один из первых патентов на систему механического зажигания с патентом США 609250 «Электрическое зажигание для газовых двигателей» 16 августа 1898 года.
Процесс зажигания двигателя
Принцип работы и устройство двигателя
Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях.
Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя.
Выделяемая в этом процессе энергия преобразуется в механическую работу.
В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
- инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
- дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
- Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
- Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
Выбираем конфигурацию двигателя
К параметрам конфигурации двигателя можно отнести следующие характеристики:
- Количество цилиндров
- Расположение цилиндров (рядное, V-образное, оппозитное)
- Расположение мотора (продольное, поперечное)
Сразу скажу, число цилиндров может быть любым, оно влияет только на объем, а варианты расположения цилиндров и положение мотора под капотом нужны исключительно для того, чтобы уместить силовую установку внутри моторного отсека автомобиля.
В ходе долгих экспериментов на протяжении всего 20-го века автомобильные конструкторы выявили самые оптимальные схемы и теперь при производстве моторов производители авто используют только эти – самые удачные конфигурации. Каждая компоновка имеет свои незначительные плюсы и минусы, о которых мы с Вами сейчас и поговорим.
Это показатель напрямую связанный с мощностью двигателя, ведь каждый цилиндр – это дополнительный объем. Современные «атмосферные» двигатели мощностью 100 л.с. обычно бывают 4-х цилиндровыми, моторы мощностью 200 л.с. – это 4,5 или 6 цилиндров, а движки с мощностью 300 л.с. – обычно имеют 8 цилиндров. Увеличение числа цилиндров – это мера по наращиванию объема двигателя с целью повышения мощности. Чем больше цилиндров – тем мощнее движок.
Вариантов здесь может быть множество, но на деле применяются только три самые оптимальные схемы.
-
-
- Рядная – когда цилиндры распложены в один ряд друг за другом
- V-образная – когда два ряда цилиндров распложены под углом друг к другу. Угол развала цилиндров составляет обычно 45, 60 или 90°
- Оппозитная – когда два ряда цилиндров располагаются один напротив другого, то есть под углом 180°
-
Самая простая схема расположения цилиндров – рядная, когда все цилиндры расположены в один ряд, прямо над коленвалом. Такие моторы просты и дешевы как в изготовлении, так и в обслуживании, поэтому именно «рядная четверка» является самой распространенной схемой.
Однако, при количестве цилиндров от 6 и более рядный двигатель становится слишком длинным и тогда конструкторам бывает нелегко втиснуть такой вытянутый мотор под капот даже крупного автомобиля. Для уменьшения двигателя в длину применяются схемы, когда цилиндры распложены в два ряда, под углом друг к другу.
V-образные моторы технологичнее рядных, они сложнее в производстве и в обслуживании, а следовательно и дороже, имейте это ввиду. Но еще сложнее и дороже – оппозиты, поэтому во всем мире их используют всего два автопроизводителя: японская компания Subaru и немецкая Porsche. Оппозиты можно назвать экзотикой, не в каждом сервисе возьмутся за ремонт этих моторов, а некоторые операции, простые для рядного двигателя являются в работе с оппозитом довольно трудоемкими.
V-образники просто идеальны с точки зрения компоновки: ширина лишь вдвое больше, чем у рядного, а длина почти вдвое меньше. Вот почему эту схему применяют для изготовления мощных двигателей почти все автомобильные компании. Но есть у V-образников и недостаток, полностью победить который вряд ли удастся – это повышенные вибрации.
Оппозиты отличаются очень малой габаритной высотой, что позволяет разместить движок буквально на дне моторного отсека. Такое расположение масс снижает центр тяжести автомобиля, что положительно сказывается на его управляемости. Также оппозитные двигатели очень хорошо сбалансированы, что проявляется в пониженном уровне вибраций.
Авиационные двигатели
Прежде чем приступить к описанию конкретного класса двигателей, лучше всего разобраться, по какому принципу их разделяют. В настоящее время эта группа классифицируется на два принципиально разных вида. Единственным отличительным признаком одной группы от другой стала возможность работы устройства вне пределов атмосферы. Другими словами, первая категория агрегатов требует для своей работы наличия атмосферы, вторая же не привязана к этому показателю и может эксплуатироваться вне ее пределов. Первая группа получила название атмосферных или воздушных, вторая же называется ракетной.
Стоит отметить, что условно эти типы устройств называют, как винтовыми воздушными двигателями и воздушными реактивными двигателями самолета.