Принцип работы гидравлики

Введение. Состав гидропривода

Предохранительные гидроклапаны защищают гидросистему от давления, превышающего установленное. Это достигается с помощью дроссельного клапана Fig.
К гидросистемам с двухступенчатым электро-гидравлическим управлением относится система с регулируемым реверсивным насосом, реверс которого осуществляется сервоприводом, управляемым электрогидравлическим распределителем.
На схеме показано нейтральное положение золотника распределителя, в данном случае он находится в центральном положении линии подведены к центральному окну.
Гидроцилиндры двустороннего действия для выдвижения и втягивания их штоков должны быть устроены так, чтобы жидкость могла под давлением проходить по обе стороны от поршня.
Один из них нерегулируемый работает на низком давлении с большей подачей, и обеспечивает требующийся ускоренный холостой ход.
Гидросистема с дроссельным управлением Положение распределителя в левой его позиции жидкость поступает в перерывающиеся каналы правого поля распределителя соответствует движению поршня силового цилиндра 3 вправо жидкость от насоса поступает в левую полость , причем в этом положении распределителя 6 и утопленного переключателя 5 жидкость как от насоса, так и из нерабочей правой полости цилиндра 3 поступает в левую его полость в этом случае рабочей площадью цилиндра является площадь сечения штока , что способствует ускоренному перемещению поршня вправо. К следующему занятию курсанты должны: — знать: классификацию и назначение различных видов специальной защитной одежды и снаряжения; назначение, устройство и принцип действия гидравлического аварийно-спасательного инструмента.
Когда давление в системе достигнет номинального, автомат разгрузки жидкость от насоса направляет на слив. Редукционный клапан 7 также устанавливается на входе в распределитель 8, управляющий цилиндром 1.
Гидрозамок — управляемый обратный клапан

Гидрораспределитель с редуктором

Гидрораспределитель с редуктором состоит из следующих основных узлов: гидрораспределителя с червячным редуктором и присоединенных к корпусу гидрораспределителя коробок предохранительного гидроклапана 17 и запорных гидроклапанов. Гидрораспределитель служит для управления силовыми гидроцилиндрами и состоит из корпуса 16 золотника, золотника 9 и центрирующего устройства, состоящего из пружин 10 и плунжеров 12, на которые опираются шайбы 8.

Центрирующее устройство обеспечивает удержание и возврат золотников в нейтральное положение. В корпусе 16 золотника имеется пять кольцевых проточек, служащих для подвода и отвода масла. Для уменьшения протечек масла в гидрораспределителе диаметральные зазоры между золотником и корпусом должны быть минимальными, что достигается подбором пары золотник-корпус.

Гидрораспределитель шпильками 11 и гайками 13 скреплен с картером 5 червячного редуктора. Червячный редуктор состоит из картера 5, червяка 4 и сектора 3.

Червяк 4 вращается на двух игольчатых подшипниках 2. На верхнем коротком конце червяка выполнены шлицы, которые вводятся в зацепление с шлицевой муфтой приводного вала рулевой колонки.

На нижнем левом конце червяка установлены золотник 9, опорные шайбы 8 и упорные подшипники 7. Степень затяжки упорных подшипников регулируется гайкой 14 при сборке узла.
Сектор 3 выполнен заодно с валиком и вращается на двух конических роликоподшипниках 22. Установка червячной пары и подшипников сектора производится прокладками 21.

Выходной конец вала сектора уплотнен двумя резиновыми кольцами 19. На валу с помощью конических шлицев и гайки закреплена сошка 18. На крышке 20 картера, торце вала сектора 3 и сошке 18 нанесены риски. При совмещении этих рисок сектор и сошка занимают положение, соответствующее прямолинейному движению трактора.

К нижней части корпуса гидрораспределителя прикреплена коробка предохранительного гидроклапана, состоящая из корпуса 4, в котором размещены седло 5 гидроклапана, шарик 7, направляющая 8 и пружина 3. Гидроклапан с помощью винта 2 регулируется на давление перепуска всего потока 10,5+0,5 МПа (105+5 кгс/см2). Регулировочный винт фиксируется гайкой 9 и колпачком 1. К верхней части корпуса гидрораспределителя прикреплена коробка запорных гидроклапанов, в которой размещены запорные гидроклапаны 3 с пружиной 2 и толкатель 4. Запорные гидроклапаны служат для запирания полостей силовых гидроцилиндров при действии внешних сил на штоки.

Уплотнения стыков деталей и узлов выполнены с помощью уплотнитель-ных резиновых колец круглого сечения.

Разборка и сборка узла и все регулировки должны производиться только в случае необходимости в специальной мастерской подготовленными лицами.

Гидрораспределители типы конструкция работа маркировка

Гидрораспределители подразделяются: по конструкции запорно-регулирующего элемента — на золотниковые, крановые и клапанные; числу внешних гидролиний — на двухлинейные, трехлинейные и т.д.; числу характерных позиций запорно-регулирующего элемента — на двухпозиционные, трехпозиционные и т.д.; виду управления — на распределители с ручным, механическим, электрическим и гидравлическим управлением; числу запорно-регулирующих элементов — на одноступенчатые, двухступенчатые и т.д.

В условном обозначении гидрораспределителя (рис. 1) указывают число его позиций (I, II), внешние гидролинии (А, Д Р, Т7), подводимые к распределителю, их соединение, а также способ управления (ГОСТ 2.871-68*).

Число позиций изображают соответствующим числом квадратов (прямоугольников). Проходы изображают прямыми линиями со стрелками, показывающими направление потоков рабочей жидкости в каждой позиции, а места соединений проходов выделяют точками; закрытый проход изображают тупиковой линией с поперечной черточкой. Внешние гйдролинии подводят только к исходной позиции. Способ управления распределителем указывают знаками, примыкающими к торцам обозначения распределителя.

Чтобы представить работу гидрораспределителя в некоторой рабочей позиции, необходимо мысленно передвинуть соответствующий этой позиции квадрат обозначения на место квадрата исходной позиции, оставляя линии связи в прежнем положении. Тогда истинные направления потока рабочей жидкости укажут стрелки, имеющиеся в этом квадрате.

Условные обозначения едины для золотниковых, крановых и клапанных гидрораспределителей, т.е. условное обозначение не отражает конструкцию их запорно-регулирующих элементов.

Кроме графических обозначений гидрораспределителей, приводят также их цифровые обозначения в виде дроби: в числителе указывают число подведенных к гидрораспределителю внешних гидролиний, в знаменателе — число его рабочих (характерных) позиций. Например, четырехлинейный трехпозиционный гидрораспределитель обозначают дробью 4/3 (см. рис. 1, г).

Запорно-регулирующие элементы (золотник, кран, клапан) в направляющих гидрораспределителях всегда занимают фиксированные позиции по принципу «полностью открыто» или «полностью закрыто». Поэтому направляющий гидрораспределитель практически не влияет на давление и расход потока рабочей жидкости, проходящей через него.

Обозначения в зависимости от типов реле

В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

Тепловые модели реле

На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

Реле времени

Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

  • дуга вниз – задержка после подачи напряжения;
  • дуга вниз – контакт, срабатывающий при возврате;
  • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

Импульсные замыкающие контакты обозначаются так:

  • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
  • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
  • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

Реле тока

Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

Особенности обозначения электромагнитных реле на схемах

Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

Промежуточное реле

Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

На схемах контакты изображаются в состоянии без подачи напряжения.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

Ячейка Величина Значение, обозначение, единица выражения
D4 45,000 Расход воды G в т/час
D5 95,0 Температура на входе tвх в °C
D6 70,0 Температура на выходе tвых в °C
D7 100,0 Внутренний диаметр d, мм
D8 100,000 Длина, L в м
D9 1,000 Эквивалентная шероховатость труб ∆ в мм
D10 1,89 Сумма коэф. местных сопротивлений — Σ(ξ)
  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

Ячейка Алгоритм Формула Результат Значение результата
D12 !ERROR! D5 does not contain a number or expression tср=(tвх+tвых)/2 82,5 Средняя температура воды tср в °C
D13 !ERROR! D12 does not contain a number or expression n=0,0178/(1+0,0337*tср+0,000221*tср2) 0,003368 Кинематический коэф. вязкости воды — n, cм2/с при tср
D14 !ERROR! D12 does not contain a number or expression ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 0,970 Средняя плотность воды ρ,т/м3 при tср
D15 !ERROR! D4 does not contain a number or expression G’=G*1000/(ρ*60) 773,024 Расход воды G’, л/мин
D16 !ERROR! D4 does not contain a number or expression v=4*G:(ρ*π*(d:1000)2*3600) 1,640 Скорость воды v, м/с
D17 !ERROR! D16 does not contain a number or expression Re=v*d*10/n 487001,4 Число Рейнольдса Re
D18 !ERROR! Cell D17 does not exist λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035 Коэффициент гидравлического трения λ
D19 !ERROR! Cell D18 does not exist R=λ*v2*ρ*100/(2*9,81*d) 0,004645 Удельные потери давления на трение R, кг/(см2*м)
D20 !ERROR! Cell D19 does not exist dPтр=R*L 0,464485 Потери давления на трение dPтр, кг/см2
D21 !ERROR! Cell D20 does not exist dPтр=dPтр*9,81*10000 45565,9 и Па соответственно
D20
D22 !ERROR! D10 does not contain a number or expression dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) 0,025150 Потери давления в местных сопротивлениях dPмс в кг/см2
D23 !ERROR! Cell D22 does not exist dPтр=dPмс*9,81*10000 2467,2 и Па соответственно D22
D24 !ERROR! Cell D20 does not exist dP=dPтр+dPмс 0,489634 Расчетные потери давления dP, кг/см2
D25 !ERROR! Cell D24 does not exist dP=dP*9,81*10000 48033,1 и Па соответственно D24
D26 !ERROR! Cell D25 does not exist S=dP/G2 23,720 Характеристика сопротивления S, Па/(т/ч)2
  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Символы линий (потоков)

Рабочая, пилотная и сливная линии

Гидравлический шланг, труба или другой трубопровод, которые перемещают масло между компонентами гидравлической системы обозначаются одинарной линией.

Рабочая линия (всасывания, нагнетания и возврата) обозначается сплошной линией.

Пилотная линия обозначается пунктирной линией с длинными чёрточками

Дренажная линия обозначается пунктирной линией с короткими чёрточками.

Линии соединения/перехода

Для того, чтобы показать, что две пересекающиеся линии не связаны, мы используем короткую петлю на одной из линий в месте пересечения.

Связь между двумя пересекающимися линиями должна быть обозначена точкой в месте соединения.

Секция 8

Разное

Прямоугольник с длинной стороной по горизонтали — это символ бака.

Символ с открытым верхом обозначает вентилируемы бак.

Символ с закрытым верхом обозначает герметичный бак.

Аккумулятор

Аккумулятор имеет овальную форму и может иметь дополнительные детали для показа давления пружины или величины заряда газа.

Охладитель масла

Охладитель масла изображён как квадрат, повёрнутый на 45° и имеет соединения по углам.

Фильтр/Стрэйнер

Пунктирная линия внутри повёрнутого квадрата.

Охладитель

Сплошная линия со стрелками на концах.

Пример гидравлической схемы шлифовального станка

Пример гидравлической схемы шлифовального станка

Возможности и преимущества гидропривода

Гидропривод — совокупность устройств (в число которых входит один или несколько объемных гидродвигателей), предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости под давлением. Гидроприводы являются одной из наиболее интенсивно развивающихся подотраслей современного машиностроения . По сравнению с другими известными приводами (в том числе электромеханическими и пневматическими) гидроприводы обладают рядом преимуществ. Рассмотрим основные из них.

  1. Возможность получения больших сил и мощностей при ограниченных размерах гидродвигателей. Так гидроцилиндр с диаметром поршня 100 мм при давлении 70 МПа, которое может создаваться ручным насосом, развивает силу около 55 т, поэтому с помощью специальных домкратов можно вручную поднимать мосты.
  2. Высокое быстродействие с обеспечением требуемого качества переходных процессов. Современные гидроприводы, например испытательных стендов, способны отрабатывать заданное воздействие с частотой до нескольких сотен герц.
  3. Широкий диапазон бесступенчатого регулирования скорости при условии хорошей плавности движения. Например, для гидромоторов диапазон регулирования достигает 1:7000.
  4. Возможность защиты гидросистемы от перегрузки и точного контроля действующих сил. Сила, развиваемая гидроцилиндром, определяется площадью его поршня и рабочим давлением, значение которого устанавливается путем настройки предохранительного клапана и контролируется манометром. Для гидромотора величина развиваемого вращающего момента пропорциональна рабочему объему (габаритным размерам гидромотора) и действующему давлению рабочей жидкости.
  5. Получение прямолинейного движения с помощью гидроцилиндра без кинематических преобразований (в электромеханическом приводе обычно требуются редуктор, винтовая или реечная передача и т.п.). Подбором площадей поршневой и штоковой камер удается обеспечить определенное соотношение скоростей прямого и обратного ходов. Немаловажным обстоятельством является идеальная защита гидроцилиндров от попадания внешних загрязнителей, что позволяет успешно эксплуатировать гидроприводы, например, в шахтном оборудовании, экскаваторах и других машинах, работающих в условиях повышенной загрязненности окружающей среды, а в ряде случаев и под водой.
  6. Обширная номенклатура механизмов управления, начиная от ручного и кончая прямым управлением от персонального компьютера, позволяет оптимальным образом использовать гидроприводы для автоматизации производственных процессов в различных отраслях техники, успешно сочетая исключительные силовые и динамические качества гидравлики с постоянно расширяющимися возможностями микроэлектроники и комплексных систем регулирования.
  7. Широкие возможности аккумулирования и рекуперации энергии создают хорошую основу для разработки современных энергоэффективных гидравлических приводных механизмов.
  8. Компоновка гидроприводов главным образом из унифицированных изделий, серийно выпускаемых специализированными заводами, обеспечивает снижение стоимости изготовления, повышение качества и надежности, удобство размещения на машине большого числа компактных гидродвигателей (гидроцилиндров или гидромоторов) с питанием от одного или нескольких насосов, открывает широкие возможности для ремонта и модернизации.

Аврутин Справочник по гидроприводам металлорежущих станков, 1965

Бирюков Б.Н. Гидравлическое оборудование металлорежущих станков, 1979

Лещенко В.А. Гидравлические следящие приводы станков с программным управлением, 1975

Свешников В.К Станочные гидроприводы: справочник, 6-е изд. перераб. и доп. 2015

Смирнов Ю.А. Неисправности гидроприводов станков, 1980

Кучер А.М., Киватицкий М.М., Покровский А.А., Металлорежущие станки (Альбом), 1972

Конструктивное решение электромагнитных гидрораспределителей

Гидрораспределители с электромагнитным приводом конструктивно состоят из прочного чугунного корпуса, в который помещен золотник. Передвигаясь по внутреннему каналу, он сообщает между собой разные каналы подвода и отвода рабочего тела, перенаправляя его в нужном количестве к тому или иному исполнительному органу. На золотник через шайбы воздействуют возвратные пружины. Все рабочие каналы выведены в нижнюю монтажную плоскость и уплотнены круглыми резиновыми кольцами. Стабильное давление рабочего тела обеспечивается широким проходом клапана.

Электромагниты, посредством которых осуществляется управление распределителем, крепятся непосредственно на корпусе. Если оба магнита будут отключены, золотник переходит в нейтральное положение. В двухпозиционных распределителях установлен только один магнит. Вместо второго предусмотрена глухая крышка. В некоторых моделях дополнительно предусмотрена кнопка ручного управления электромагнитами. С ее помощью оператор проверит, насколько правильно перемещается золотник, сможет переключить распределитель вручную, в том случае, если электромагнит не будет работать (возможно при проблемах с подачей электроэнергии).

Сам электромагнит может быть как переменного, так и постоянного тока. Конструктивно он состоит из катушки и арматурной трубки, в которую помещен плунжер. Полость заполнена маслом, благодаря чему даже при интенсивной эксплуатации этот элемент не изнашивается.

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т

д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:

  1. Расчетную длину магистралей делят на их диаметр.
  2. Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
  3. Перемножают полученные величины.
  4. Умножают результат на коэффициент путевых потерь.

Сама формула при этом выглядит так:

∆pi = λ х li(p) : d х pV2 :2.

В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector