Bullet3425 блог 10 что такое впрыск топлива и как работает система впрыска

Устройство и принцип работы

Чтобы разобраться детальнее в принципе работы инжектора, нужно посмотреть на его основные компоненты. Любая инжекторная система состоит из нескольких базовых элементов. А именно из:

  • топливных форсунок,
  • топливной рампы,
  • насоса,
  • датчиков,
  • ЭБУ.

Каждый компонент играет свою ключевую роль в том, как работает инжектор с установленными внутри него топливными подающими форсунками.

  1. Форсунки. Являются основным, главным элементом всей подающей системы. Именно форсунки стали причиной для названия инжектора, поскольку они предназначены для распыления и подачи через специальные впускные коллекторы или напрямую в камеру сгорания топлива. Форсунка состоит из корпуса, внутри которого размещается клапан. Этот клапан обязательно электромагнитного типа. Он открывает и закрывает распылитель (форсунку). Сам процесс распыления осуществляется за счёт наличия отверстия кольцевой формы, предусмотренного между иглой и стенками корпуса. Игла управляется клапаном.
  2. Рампа. Важный элемент для современных автомобильных инжекторных систем, которые функционируют по принципу распределённого впрыска. С помощью рампы топливо подаётся на все установленные форсунки, и объединяет их в общую систему.
  3. Насос. Поскольку топливо в случае с инжекторами подаётся под определённым давлением, для его создания нужен электронасос.
  4. ЭБУ. Блок управления полностью отвечает за контроль и процесс подачи формируемой топливовоздушной смеси. Внешне напоминает небольшой блок, соединённый с разными датчиками, форсунками, топливным насосом, а также системой зажигания и прочими элементами. ЭБУ собирает информацию с разных контроллеров и датчиков, что позволяет ему правильно определять пропорции горючего и воздуха, в нужный момент выполнять впрыск и т. д.
  5. Датчики. С помощью датчиков фиксируются различные показатели в условиях реального времени. Причём каждый автопроизводитель определяет перечень датчиков, к которым подключается ЭБУ. Чем больше информации передают контроллеры на блок управления, тем эффективнее работает вся система.

Все эти компоненты тесно связаны друг с другом и постоянно взаимодействуют. Именно на этом взаимодействии базируется принцип работы самого инжекторного двигателя.

Выглядит это примерно следующим образом:

  • включается зажигание,
  • питание идёт на насос, расположенный в топливном баке,
  • насос передаёт топливо по магистрали под давлением,
  • форсунки располагаются на рейке,
  • через рейку топливо поступает к форсунке,
  • дополнительно на рейке (рампе) находятся регуляторы давления,
  • датчики передают на ЭБУ необходимую для анализа информацию,
  • блок синхронизирует впрыск, подавая на форсунки специальные управляющие импульсы,
  • импульсы вынуждают рабочие форсунки открываться в заданный момент времени.

Если говорить простым языком, то горючее распыляется с помощью рабочих форсунок в самом коллекторе, там смешивается с кислородом (воздухом) и подаётся в камеру сгорания через клапаны.

Неоспоримым преимуществом современной инжекторной топливоподающей системы является способность автоматически за доли секунды менять режим работы двигателя, опираясь на текущие условия.

Такая высокая точность в работе системы стала возможной за счёт использования электроники, объединённой в блок управления всем автомобильным двигателем.

Каждый датчик непрерывно передаёт информацию в ЭБУ, который её анализирует и корректирует работу системы по мере необходимости. Это позволяет добиться необходимой мощности, производительности, экономичности и экологичности.

Принцип работы инжектора

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока.

Регулировка многоточечного впрыска

Прежде чем рассмотреть принцип регулировки впрыска, стоит учесть, что каждая модификация ТС имеет свои тонкости работы. Поэтому и настройка системы может происходить по-разному. Вот как выполняется процедура в случае с самыми распространенными модификациями.

Bosch L3.1, MP3.1

Прежде чем приступать к настройке такой системы, нужно:

  1. Проверить состояние зажигания. В случае необходимости изношенные детали меняются на новые;
  2. Убедиться, что дроссель работает исправно;
  3. Устанавливается чистый воздушный фильтр;
  4. Прогревается мотор (пока не включится вентилятор).

Вначале настраивается холостой ход. Для этого на дросселе имеется специальный регулировочный винт. Если поворачивать его по часовой стрелке (закручивается), то показатель оборотов ХХ будет снижаться. В противном случае – увеличиваться.

В согласии с рекомендациями завода-изготовителя на систему устанавливаются анализаторы качества выхлопа. Далее снимается заглушка с регулировочного винта подачи воздуха. Поворотом этого элемента настраивается состав ВТС, о чем будет указывать анализатор отработанных газов.

Bosch ML4.1

В данном случае холостой ход не выставляется. Вместо этого к системе подключается упомянутый в предыдущем обзоре прибор. По состоянию выхлопных газов при помощи регулировочного винта настраивается работа многоточечного распыления. Когда рука проворачивает винт по ходу часовой стрелки, состав СО будет увеличиваться. При повороте в другую сторону этот показатель уменьшается.

Bosch LU 2-Jetronic

Такая система регулируется на число оборотов ХХ так же, как и первая модификация. Настройка обогащения смеси производится при помощи алгоритмов, прошитых в микропроцессоре блока управления. Этот параметр корректируется в соответствии с импульсами лямбда-зонда (подробней об устройстве и его принципе работы читайте отдельно).

Bosch Motronic M1.3

Обороты холостого хода в такой системе регулируются, только если газораспределительный механизм имеет 8 клапанов (4 на впуск, 4 на выпуск). В 16-клапанниках ХХ корректируется электронным блоком управления.

8-клапанник регулируется по той же схеме, что и предыдущие модификации:

  1. ХХ настраивается винтом на дросселе;
  2. Подсоединяется анализатор СО;
  3. При помощи регулировочного винта настраивается состав ВТС.

Некоторые автомобили оснащены такой системой, как:

  • ММ8Р;
  • Bosch Motronic5.1;
  • Bosch Motronic3.2;
  • Sagem-Lukas 4GJ.

В этих случаях отрегулировать ни холостые обороты, ни состав воздушно-топливной смеси не получится. Производитель таких модификаций не предусмотрел такой возможности. Всю работу должен выполнять ЭБУ. Если электроника не смогла настроить работу впрыска корректно, значит, имеются какие-то системные ошибки или поломки. Их выявить можно только при диагностике. В самых сложных ситуациях некорректная работа ТС обусловлена поломкой блока управления.

История

Появление и применение систем впрыска в авиации

Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Система непосредственного впрыска авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционная система впрыска в силу конструкции работает в любом положении относительно направления силы тяжести.

Первый в России опытный мотор с системой впрыска был изготовлен в 1916 году Микулиным и Стечкиным.

К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz DB 601. Именно этими моторами объёмом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л. с., то DB 601 с впрыском позволял поднять мощность до 1100 л. c. и более. Позже в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — лицензионный авиадвигатель Pratt & Whitney Hornet, который на BMW производили с 1928 года. Он же устанавливался, к примеру, на транспортные самолеты Junkers Ju 52. Авиационные двигатели в Англии, США и СССР в те времена были исключительно карбюраторными. Японская же система впрыска на истребителях «Mitsubishi A6M Zero» требовала промывки после каждого полета и поэтому не пользовалась популярностью в войсках.

Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиационных двигателей с впрыском, работы по созданию отечественных систем непосредственного впрыска получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2. Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался ещё долгие десятилетия, использовался на вертолете Ми-4 и самолетах Ил-14.

К концу войны довели до серии свой вариант впрыска и в США. Например, двигатели «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.

Начало реактивной эры привело к прекращению работ по системам впрыска. На тяжелых и скоростных самолетах применялись турбовинтовые и реактивные двигатели, а поршневые ставились лишь на тихоходные легкие маломаневренные самолеты и вертолеты, которые могли нормально работать и с карбюраторной системой питания.

Применение систем впрыска в автомобилестроении

Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного фирмой Goliath из Бремена. В 1954 году появилось купе Mercedes-Benz 300 SL («крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch. На рубеже 1950—1960-х годов над электронными системами впрыска топлива активно работали Chrysler и ГАЗ. Тем не менее, до эпохи появления дешёвых микропроцессоров и введения жёстких требований к уровню вредных выбросов автомобилей идея впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.

Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel 1967 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объёмом 5,4 л в карбюраторном варианте развивала 255 л. с., а в заказной версии Electrojector уже 290 л. с. Разгон до 100 км/ч у такого седана занимал менее 8 с.

К началу 2000-х годов системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.

Устройство инжекторной системы подачи топлива

Теперь предлагаем ознакомиться с устройством инжекторной СПТ. Все современные силовые агрегаты оборудуются форсунками, их число соответствует количеству установленных цилиндров, а между собой эти детали соединяются с помощью рампы. Само горючее в них содержится под невысоким давлением, которое создается благодаря насосному устройству. Объем поступающего топлива зависит от того, как долго открыта форсунка, а это, в свою очередь, контролируется управляющим модулем.

Для корректировки блок получает показания с различных контроллеров и датчиков, расположенных в разных частях автомобиля, предлагаем ознакомиться с основными устройствами:

  1. Расходомер или ДМРВ. Его предназначение заключается в определении наполненности цилиндра двигателя воздухом. Если в системе имеются неполадки, то его показания блок управления игнорирует, а для формирования смеси использует обычные данные из таблицы.
  2. ДПДЗ — положения дросселя. Его назначение заключается в отражении нагрузки на мотор, которая обусловлена положением дроссельной заслонки, оборотами мотора, а также цикловым наполнением.
  3. ДТОЖ. Контроллер температуры антифриза в системе позволяет реализовать управления вентилятором, а также произвести регулировку подачи горючего и зажигания. Разумеется, все это корректирует блок управления, основываясь на показаниях ДТОЖ.
  4. ДПКВ — положения коленвала. Его назначение заключается в синхронизации работы СПТ в целом. Устройство осуществляет расчет не только оборотов силового агрегата, но и положения вала в определенный момент. Само по себе устройство относится к полярным контроллерам, соответственно, его поломка приведет к невозможности эксплуатации автомобиля.
  5. Лямбда-зонд или . Он используется для определения объема кислорода в выхлопных газах. Данные от этого устройства поступают на управляющий модуль, который, основываясь на них, производит корректировку горючей смеси (автор видео — Avto-Blogger.ru).

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Устройство

В инжекторной системе подачи впрыск топлива в воздушный поток осуществляется специальными форсунками — инжекторами.

Классификация

По точке установки и количеству форсунок:

  • Моновпрыск, центральный впрыск, или одноточечный впрыск — одна форсунка на все цилиндры, расположенная, как правило, на месте карбюратора (на впускном коллекторе). В настоящее время непопулярна ввиду возросших экологических требований: начиная с Евро-3 экологический стандарт требует индивидуальной дозировки топлива для каждого из цилиндров. Моновпрыски отличались простотой и очень высокой надежностью, прежде всего из-за того, что форсунка находится в относительно комфортном месте, в потоке холодного воздуха.
  • Распределённый впрыск, или многоточечный впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе вблизи впускного клапана. В то же время различают несколько типов распределённого впрыска:
  • Одновременный — все форсунки открываются одновременно.
  • Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед тактом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке датчика положения распределительного вала (так называемой фазы).
  • Фазированный впрыск — каждая форсунка управляется отдельно и открывается непосредственно перед тактом впуска.
  • Непосредственный впрыск — впрыск топлива происходит прямо в камеру сгорания.

Управление системой подачи топлива

В настоящее время системами подачи топлива управляют специальные микроконтроллеры, этот вид управления называется электронным. Принцип работы такой системы основан на том, что решение о моменте и длительности открытия форсунок принимает микроконтроллер, основываясь на данных, поступающих от датчиков. На ранних моделях системы подачи топлива, в роли контроллера выступали специальные механические устройства.

Принцип работы

В контроллер при работе системы поступает со специальных датчиков информация о следующих параметрах:

  • положении и частоте вращения коленчатого вала;
  • массовом расходе воздуха двигателем;
  • температуре охлаждающей жидкости;
  • положении дроссельной заслонки;
  • содержании кислорода в отработавших газах (в системе с обратной связью);
  • наличии детонации в двигателе;
  • напряжении в бортовой сети автомобиля;
  • скорости автомобиля;
  • положении распределительного вала (в системе с последовательным распределенным впрыском топлива);
  • запросе на включение кондиционера (если он установлен на автомобиле);
  • неровной дороге (датчик неровной дороги);
  • температуре входящего воздуха.

На основе полученной информации контроллер управляет следующими системами и приборами:

  • топливоподачей (форсунками и электробензонасосом),
  • системой зажигания,
  • регулятором холостого хода,
  • адсорбером системы улавливания паров бензина (если эта система есть на автомобиле),
  • вентилятором системы охлаждения двигателя,
  • муфтой компрессора кондиционера (если он есть на автомобиле),
  • системой диагностики.

Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать большое число программных функций и данных с датчиков. Также, современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения и многие другие характеристики и спецификации. Ранее использовалась механическая система управления впрыском.

Для оперативного выявления неисправностей инжектора используется компьютерная диагностика инжекторной системы подачи топлива.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Не нашли интересующую Вас информацию? на нашем форуме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector